Triazolylthioacetamide: A Valid Scaffold for the Development of New Delhi Metallo-β-Lactmase-1 (NDM-1) Inhibitors

ACS Med Chem Lett. 2016 Feb 16;7(4):413-7. doi: 10.1021/acsmedchemlett.5b00495. eCollection 2016 Apr 14.

Abstract

The metallo-β-lactamases (MβLs) cleave the β-lactam ring of β-lactam antibiotics, conferring resistance against these drugs to bacteria. Twenty-four triazolylthioacetamides were prepared and evaluated as inhibitors of representatives of the three subclasses of MβLs. All these compounds exhibited specific inhibitory activity against NDM-1 with an IC50 value range of 0.15-1.90 μM, but no activity against CcrA, ImiS, and L1 at inhibitor concentrations of up to 10 μM. Compounds 4d and 6c are partially mixed inhibitors with K i values of 0.49 and 0.63 μM using cefazolin as the substrate. Structure-activity relationship studies reveal that replacement of hydrogen on the aromatic ring by chlorine, heteroatoms, or alkyl groups can affect bioactivity, while leaving the aromatic ring of the triazolylthiols unmodified maintains the inhibitory potency. Docking studies reveal that the typical potent inhibitors of NDM-1, 4d and 6c, form stable interactions in the active site of NDM-1, with the triazole bridging Zn1 and Zn2, and the amide interacting with Lys 211 (Lys224).

Keywords: Metallo-β-lactamase; NDM-1; inhibitor; triazolylthioacetamide.